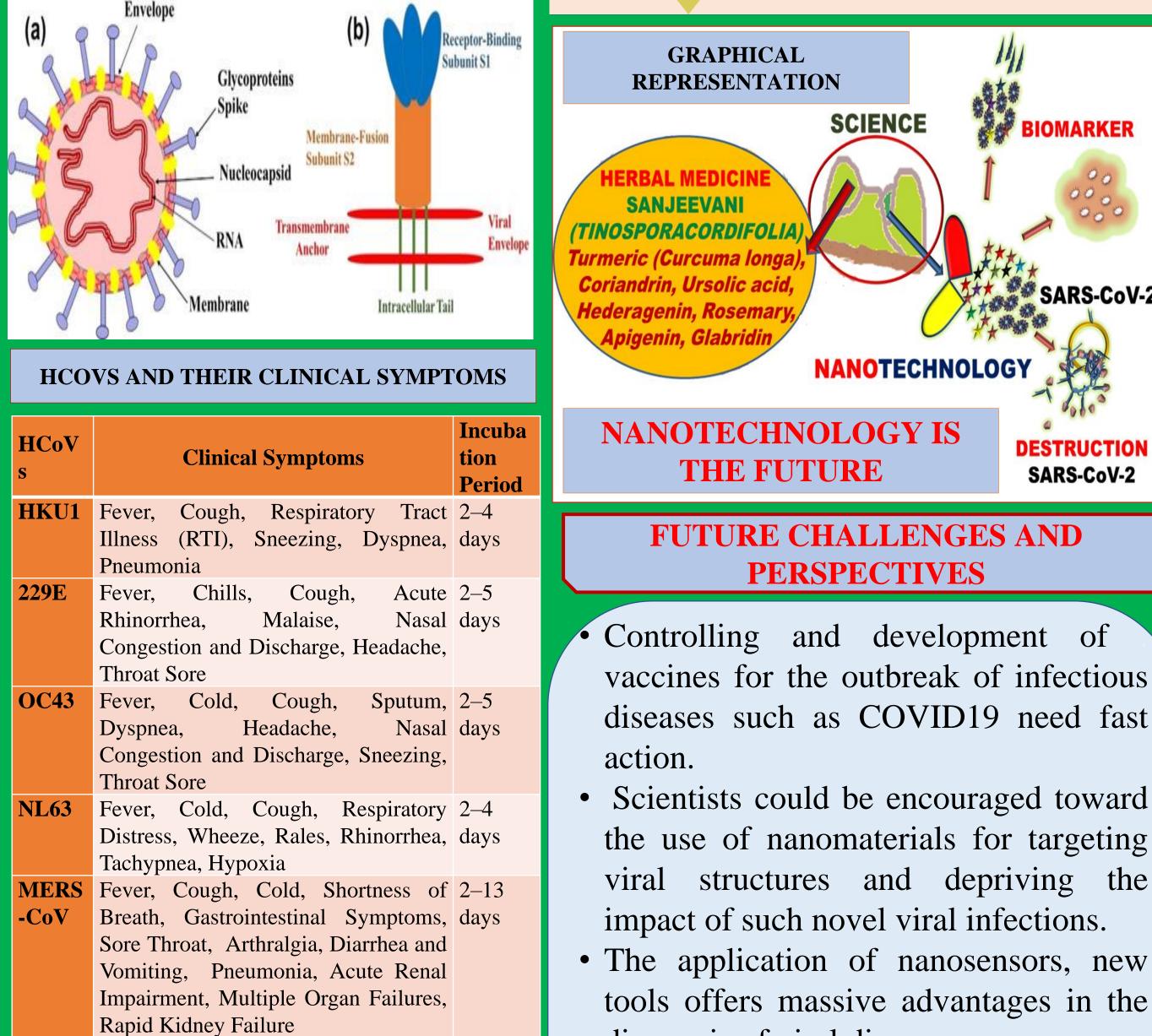
34


Coronavirus Outbreaks: Nanomedicine and Future Perspectives

Akanksha Gupta¹, Sanjay Kumar², Ashish Kumar Choudhary³, Vinod Kumar^{*4} ¹Department of Chemistry, Sri Venkateswara College, University of Delhi, India; ²Department of Chemistry, Deshbandhu College, University of Delhi, India; ³Department of Botany, University of Delhi, India; ⁴Special Centre for Nano Sciences, Jawaharlal Nehru University, Delhi, India (kumarv@jnu.ac.in).

Presented at : Vancouver Nanomedicine Day 2020

INTRODUCTION HISTORICAL BACKGROUND SCHEMATIC OVERVIEW OF SARS-COV-2 LIFE CYCLE IN HOST • In last two decades, entire world faced three 1962, Chicago HCoV 229E; Respiratory infections among medical students at University of outbreaks of coronaviruses like SARS, USA Chicago 2002-2003, SARS-CoV-2 **HCoV-NL63**; Replicated faster in monkey kidney cells as compared to HCoV MERS and Now, COVID19. Netherlands 229E • The first case of recent outbreak of Spike receptor binding 2003, Hongkong **SARS-CoV**; Outbreak of severe respiratory infection in China COVID19 recognized was Host Cell 2003, Frankfurt, SARS-CoV; patient traveled Singapore, Hong Kong, New York and During a ACE2 receptor at Wuhan, Hubei, China five months ago. stopover in Frankfurt, Germany on day 7 Germany endocytosis 2003-2004, **SARS-CoV**; isolated from civet cats, the study revealed that it might be • Later, it spread in the whole world and Exocytosi Shenzhen, China originated from animals genomic RNA (+) affects global health as well as global AAA HCoV 229E, NL63, OC43, HKU1; Out of 417 samples, 2.4% HCoV-NL63, ~3% 2009-2012, **Translation of** Kenya OC43, ~2% HKU1, 1% 29E. economy in very short duration. RN endosome RdRP replication ORF1a/ORF1b MERS-CoV; Relatives are bat coronaviruses HKU4 and HKU5, 60 years old 2012, Jordan, • From the early 1900s to date, around 250 man died due to renal failure and respiratory infection. Saudi Arabia transcription nembrane **CoV of unknown origin;** severe respiratory infection, the patient traveled viruses species have been evolved, and these 2012, UK from Qatar and Saudi Arabia. keep up increases in the coming years translati HCoV-OC43; genomic studies helped to understand the dynamics of 2001-2013, • Here, describe the role of nanotechnology evolution of CoVs France HCoVs OC43, NL63, 229E, HKU1; Out of 854575 cases; 2.2% OC43, 1.0% and herbals to combat COVID19. 2014-2017, USA pp1a NL63, 0.8% 229E, 0.6% HKU1. **GENERAL STRUCTURE OF** COVS (a) pp1ab **SARS-CoV-2**; Responsible for COVID-19, severe respiratory infection which 2019, China (b) PREFUSION COVS SPIKES autoproteolytic turned into global pandemic.

d to 24

days

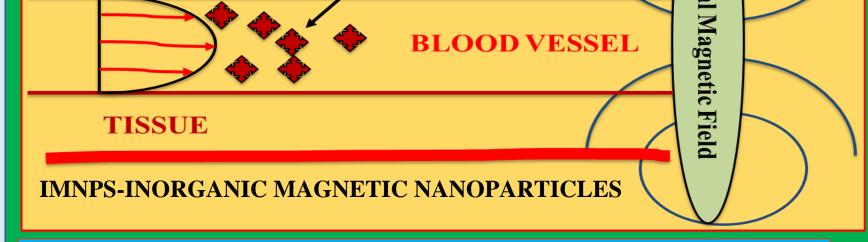
L TION SCIENCE	BIOMARKER	gRN. sgRN DMV polyr	ified schematic overview A-genomic RNA; ERO NA- subgenomic RNA; R V- double-membrane vo merase. FUNCTIONS OF NON-S
NANOTECHNOLOG	SARS-CoV-2	nsp1 nsp2 nsp3 nsp4 nsp5	 Promotes degradation of cells cell, obstructive distinctive im Some functions are not known Multi-domain large transmub11 domains • Cytokine e Potential transmembrane scaft chymotrypsin-like protease
NOLOGY IS TURE CHALLENGES RSPECTIVES	DESTRUCTION SARS-CoV-2	nsp6 nsp7 nsp8	polypeptides, inhibit interferon Restrict expansion of autop protein, DMV formation Formation of hexadecameric processivity clamp and primas Forms hexadecameric complete processivity clamp for RNA po
and developm the outbreak of as COVID19 uld be encourag	infectious need fast	nsp9 nsp10 nsp12 nsp13 nsp14 nsp15 nsp16	RNA binding protein, Dimeriz Stimulates 2-O-MT and ExoN Primer and RNA-dependent, I RNA helicase, 5' triphosphatas Exoribonuclease activity for v 5' cap to viral RNAs, 3'-5' exon nsp15 endoribonuclease, evasio
anomaterials for targeting res and depriving the h novel viral infections. on of nanosensors, new		ILL	USTRATION OF IMNPS
			TISSUE IM

of SARS-CoV-2 life cycle in host cells, **GIC-ER-Golgi intermediate complex; RTC-replication transcription complexes;** esicles; RdRP- RNA-dependent RNA

processing

STRUCTURAL PROTEINS (NSPS)

nsp1	Promotes degradation of cellular mRNA as well as blocks translation of host		
	cell, obstructive distinctive immunity reaction, inhibit interferon (IFN) signals		
nsp2	Some functions are not known, holds to prohibitin proteins		
nsp3	Multi-domain large transmembrane protein • N protein interact with Ac and		
	Ub11 domains • Cytokine expression promote due to ADRP activity		
nsp4	Potential transmembrane scaffold protein, Role in DMVs formation		
nsp5	chymotrypsin-like protease (3CLpro),main protease (Mpro), cleaves viral		
	polypeptides, inhibit interferon (IFN) signals		
nsp6	Restrict expansion of autophagosome, Potential transmembrane scaffold		
	protein, DMV formation		
nsp7	Formation of hexadecameric complex with nsp8 and nsp12, role as a		
	processivity clamp and primase for RNA polymerase		
nsp8	Forms hexadecameric complex with nsp7 and 12, may act as primase as well as		
	processivity clamp for RNA polymerase		
nsp9	RNA binding protein, Dimerization		
nsp10	Stimulates 2-O-MT and ExoN activities, Scaffold protein for nsp14 and nsp16		
nsp12	Primer and RNA-dependent, RNA polymerase		
nsp13	RNA helicase, 5' triphosphatase		
nsp14	Exoribonuclease activity for viral genome proofreading, N7-Mtase activity adds		
	5' cap to viral RNAs, 3'-5' exoribonuclease,		
nsp15	nsp15 endoribonuclease, evasion of dsRNA sensors		
nsp16	2'-O-Methyltransferase (2'-O-Mtase); avoiding MDA5 recognition, negative		
	regulation of innate immunity		


S BASED DRUG DELIVERY SYSTEM External **IMNPS** TISSUE

SARS- Fever, Cough, Cold, Rigor, Shortness 2–11 CoV Breath, Gastrointestinal days Of Symptoms, Myalgias, Headache, Malaise, Dyspnea, Respiratory Distress, Diarrhea, Pneumonia

SARS- Fever, Coughing, Cold, Sore Throat, 2–14 **CoV-2** Nasal Congestion and Rhinorrhea, days (COVI Diarrhea, Asymptomatic, Organ but in Function Damage, Acute Kidney And some **D-19**) Cardiac Infection, Liver Dysfunction, cases Pneumothorax extende diagnosis of viral diseases.

• The development of nanosensors will be beneficial due to low cost, rapid detection tool and can help in the epidemics

• The herbal drugs designed using specific parts of increase the resistance against the emerging and re-emerging viruses and bacteria.

A. Gupta, S. Kumar, R. Kumar, A. K. Choudhary, K. Kumari, P. Singh, V. Kumar (2020), COVID-19: Emergence of Infectious Diseases, Nanotechnology Aspects, Challenges, and Future Perspectives ChemistrySelect, 5, 7521-7533.

We welcome your innovative suggestions and collaborative support

