Exploring the Potential of a Personalized Corona in Lipid Nanoparticles for siRNA delivery

CONTACT: v.francia@umcutrecht.nl <u>Francia V</u>^{1,2}, Schiffelers RM², Cullis PR¹, Witzigmann D¹ ¹Department of Biochemistry & Molecular Biology, UBC, Vancouver, BC V6T 1Z3, Canada ²Department of Clinical Chemistry and Haematology, UMC Utrecht, 3584 CX, Netherlands

VANCOUVER NANOMEDICINE DAY UBC

AIM

66

Develop precise and personalized nucleic acid therapeutics by investigating the biological interactions of clinically relevant lipid nanoparticles

Figure 1: Following intravenous administration, Lipid Nanoparticles (LNPs) adsorb blood biomolecules on their surface forming a "**corona**". Corona proteins (e.g. ApoE) are recognized by cell receptors (e.g on hepatocytes), leading to nucleic acid cytoplasmatic release.

REFERENCES

Akinc, et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat. Nanotechnol. 14, 1084–1087 (2019).

Francia,V et al. The Biomolecular Corona of Lipid Nanoparticles for Gene Therapy. Bioconjugate Chemistry Article ASAP

ACKNOWLEDGEMENTS

Financial support from the University Medical Center Utrecht (Netherlands) and the European Union's Horizon 2020 research and innovation programme "EXPERT" (#825828)

EXPERT

	UBC	THE UNIVERSITY
ht	RVFF	OF BRITISH COLUMBIA

METHODS

RESULTS

a) The corona of LNPs in different media

S H M

Figure 4: IONP-LNP were incubated in human (H) or mouse serum and the corona-IONP-LNP separated as described in methods. Complexes were run on a polyacrylamide gel and stained with Comassie blue. <u>The 2</u> samples have different proteins in their <u>corona</u> (blue arrows). S = standard

b) Uptake of corona-LNP complexes

Figure 5: Corona-IONP-LNP complexes were incubated on HEPG2 cells (hepatocytes). Cells were fixed and stained and imaged via confocal. Blue: nuclei; Red: lysosomes; Green: LNP

CONCLUSIONS

- Magnetic IONP-LNPs can be effectively formulated and separated from free IONP and emply LNPs
- Corona of IONP-LNPs formed in different media has a different protein content