# Towards an Understanding of Optimum Ultrasonication Process Time on Size Reduction of Hempseed Oil Nanoemulsions Farahnaz Fathordoobady<sup>1</sup>, Yigong Guo<sup>1</sup>, Natalia Sannikova<sup>2</sup>, Anubhav Pratap-Singh<sup>1</sup>\*

Faculty of Land and Food System (LFS), University of British Columbia, Vancouver, BC Canada <sup>2</sup>Ascension Sciences Inc., Vancouver, BC \*Correspondence: anubhav.singh@ubc.ca



| Ps(t) = at + b                            | Zero-order   |
|-------------------------------------------|--------------|
| $Ps(t) = ae^{-b*t} + c$                   | First-order  |
| $Ps(t) = \frac{1}{\frac{1}{1+(h*t)}} + c$ | Second-order |

Optimal ultrasound time (Ps<sub>opt</sub>) for maximum size reduction ( $\tau$  %) was calculated as: Ps<sub>opt</sub> = Ps<sub>before</sub> - τ% (Ps<sub>before</sub> - Ps<sub>after</sub>)

#### **Modeling Studies Results**



• The relation between Ps and process time (t) was best fitted to first-order model ( $R^2 = 0.95 \pm 0.04$ ).

 $Ps(t) = ae^{-b*t} + c$ 

When t  $\rightarrow \infty$ ,  $P_S(t) \rightarrow c$ , c = final particle size after 60 min process time

When t = 0, 
$$Ps(t) = a + c \rightarrow Ps_{before} = a + c$$
,  $Ps_{after} = c$ 

 The relationships between the optimal time (T<sub>opt</sub>) and Ps (t), and maximum reduction time ( $\tau$  %) were:

 $Topt = \frac{-2.303}{h} \times log\left(\frac{(1 - \tau \%) \operatorname{Ps}_{before} + \tau \% \operatorname{Ps}_{after} - c}{h}\right)$ Equation (2) simplifies to:

$$Topt = \frac{-2.303}{b} \times log (1 - \tau \%)$$

• The  $T_{opt}$  tended to be the same once  $\tau$ % was close to 1. Thus,  $\tau$ % was defined as 99% to calculate the  $T_{opt}$ . The  $T_{opt}$  was found ~ 10 min for nanoemulsion samples prepared in different volumes and with various amplitudes.

## Virtual Vancouver Nanomedicine Day 202



(3)

(2)

### Conclusion

 The optimum formulation of hempseed oil nanoemulsion prepared with ultrasound process contained particles with average size of 176.2± 5.04 nm .

 Particle size reduction was not significantly (p> 0.05) impacted by the ultrasonication process time.

• The first-order model was the most suitable for modeling the relationship between the process time and the particle size reduction.

• The T<sub>opt</sub> of all samples was around 10 min independent of volume (mL) and processing amplitude (%).

• The results of this study provide insight into the ultrasonic process optimization for nanoemulsions prepared for drug delivery purposes.

### Acknowledgment

This research was funded by the National Science and Engineering Research Council of Canada (NSERC). Discover Grant Number RGPIN -2018-04735 and MITACS Accelerate grant number IT0676 in collaboration with Ascension Sciences Inc., Vancouver, BC, Canada.

