
80 Background

- Nanoparticles have to extravasate from blood vessels and reach tumour to deliver drugs and imaging agents.
- The central dogma of nanomedicine, Enhanced Permeation and Retention (EPR) Effect, postulates that NPs extravasate via inter-endothelial gaps
- Existence of gaps drove researchers to develop nanoparticles for cancer. But, nanoparticle accumulation in tumours remain poor (~1%).
- Thus, we revisted the phenomenon to answer the question: *How do nanoparticles enter solid tumours?*

Results and Discussion

1. Are there enough gaps to explain accumulation?

Gap WI/mm

0.0

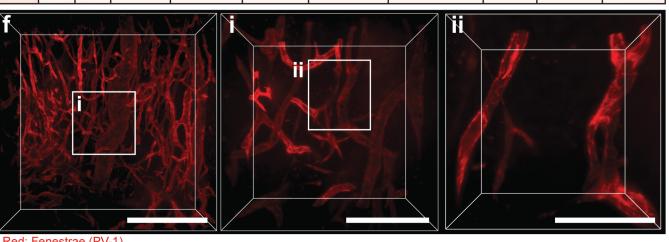
1.7

MMTV-PyMT

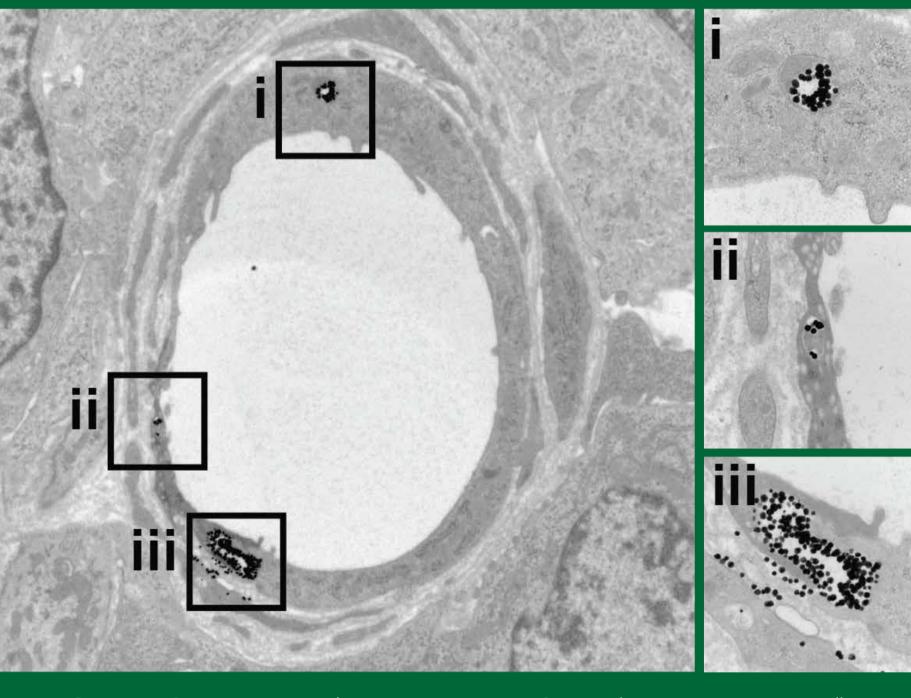

Vessels

27

594


135

2. Can NPs enter tumours through transcytosis?

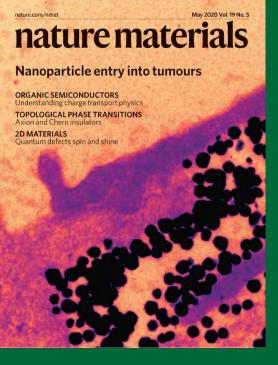

- Name parties to call on the first term of the										
NP size	Model	Lumen (%)	Side wall (%)	Vesicles (%)	Cytoplasm (%)	Extravascular (%)	# Vessels	Length (µm)	Total # NF	
15 nm	U87	35.55	12.70	0.08	3.63	48.04	26	969	2371	
1311111	PyMT	77.35	3.60	0.53	3.79	14.73	22	451	8547	
50 nm	U87	65.20	4.68	0.00	0.26	29.85	26	653	3052	
50 nm	PyMT	60.25	7.45	0.62	2.40	29.28	15	394	1127	
100 nm	U87	64.43	14.43	0.26	0.52	20.36	20	739	388	
100 11111	PyMT	92.84	3.46	0.58	0.12	3.00	22	843	866	
Range article location by time poet injection										

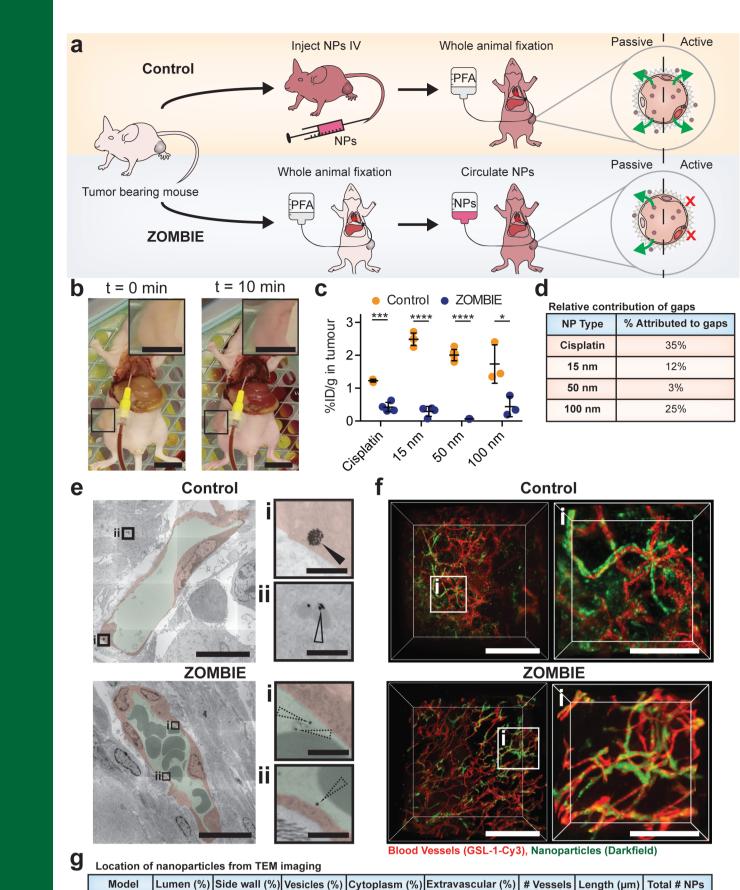
Nanoparticle location by time post injection											
NP size	Model	Time	Lumen (%)	Side wall (%)	Vesicles (%)	Cytoplasm (%)	Extravascular (%)	# Vessels	Length (µm)	Total # NP	
	U87	15 min	65.20	4.68	0.00	0.26	29.85	26	653	3032	
50 nm		60 min	49.47	6.99	0.00	3.35	40.19	21	606	1045	
30 11111	PyMT	15 min	60.25	7.45	0.62	2.40	29.28	15	394	1127	
	Fywii	60 min	44.97	3.61	4.93	2.47	44.02	20	535	1054	
f					iii		Ni.	1			

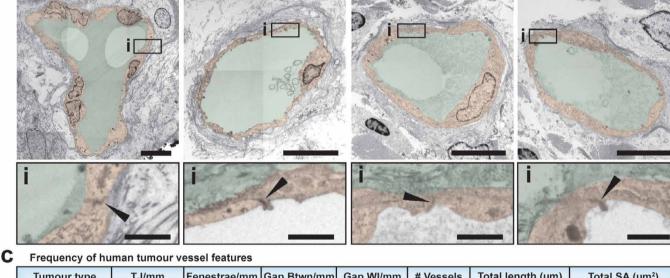
Q: How do nanoparticles enter solid tumours?

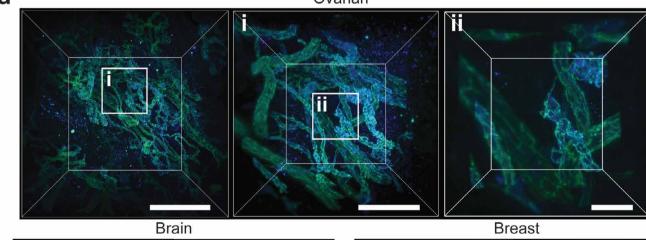
Ans: Nanoparticles enter solid tumours through trans-endothelial pathways, not inter-endothelial gaps

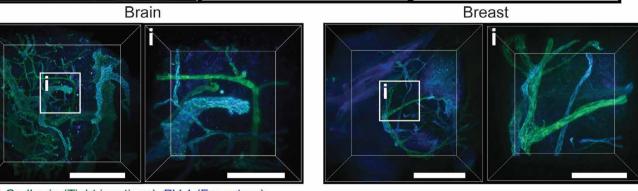
Shrey Sindhwani *, Abdullah M. Syed *, Jessica Ngai *, Benjamin R. Kingston *, Laura Maiorino *, Jeremy Rothschild, Presley Macmillan, Yuwei Zhang, Netra Unni, Tran Hoang, Stefan Wilhelm, Anton Zilman, Suresh Gadde, Andrew Sulaiman, Lisheng Wang, Mikala Egeblad and Warren Chan


*,# Equally Contribution; Email: warren.chan@utoronto.ca


Canadiai Cancer Society


3. What is the dominant mechanism?


4. What is the likely mechanism in humans?


2281

a	Nanoparticle location by tumour type									
	Model	Lumen (%)	Side wall (%)	Vesicles (%)	Cytoplasm (%)	Extravascular (%)	# Vessels	Length (µm)	Total # NPs	
	U87	65.20	4.68	0.00	0.26	29.85	26	653	3032	
	РуМТ	60.25	7.45	0.62	2.40	29.28	15	394	1127	
	4T1	41.36	5.72	6.19	6.00	40.73	27	594	3165	
	PDX	3.78	3.85	1.47	3.78	87.13	17	535	1430	
b	0	varian		Brai		Breast				

,	Frequency of hu	Frequency of human tumour vessel features									
	Tumour type	TJ/mm	Fenestrae/mm	Gap Btwn/mm	Gap WI/mm	# Vessels	Total length (µm)	Total SA (µm²)			
	Ovarian	130	5	0.0	0.0	29	941	205			
	Brain	228	61	0.0	0.0	14	289	79			
	Breast	165	9	0.0	1.4	24	695	149			

VE-Cadherin (Tight junctions), PV-1 (Fenestrae)

Affiliations

¹ Institute of Biomaterials & Biomedical Engineering and Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Canada. ² MD/PhD Program. ³ Chemical Engineering and Applied Chemistry, University of Toronto, Canada. ⁴ Watson School of Biological Sciences, Cold Spring Harbor, NY, USA. ⁵ Department of Physics, University of Toronto, Canada. ⁶ Department of Chemistry, University of Toronto, Canada. ⁷ Faculty of Applied Science and Engineering, University of Toronto, Canada. ⁸ Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA. ⁹ Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Canada. ¹⁰ Materials Science & Engineering, University of Toronto.