Development of HSD17B13 Targeting siRNA-GalNAc as a Potential Therapy for Fibrosis in NASH

Xin Ye, Steven Tyler, Alice Li, Chris Pasetka, David Le, Mark Wood, Richard Holland, Christy Esau, James Heyes
Genevant Sciences Corporation, 155-887 Great Northern Way, Vancouver, BC V5T 4T5

INTRODUCTION

- Nonalcoholic steatohepatitis (NASH) is one of the most common chronic liver diseases.
- Increased risk of liver fibrosis is a key pathogenic factor for morbidity and mortality in NASH, yet no approved therapy is available.
- HSD17B13 is a genetically validated target for treating liver fibrosis in NASH. It is overexpressed in NASH patients and hypothesized to be related to generation of cytotoxic lipids. Deficiency is associated with reduced fibrosis.
- GNV069 is a HSD17B13-targeting siRNA-GalNAc conjugate that demonstrated potency in reducing hepatic HSD17B13 levels in NHP and favorable tolerability in nonclinical studies, providing promise as a treatment for fibrosis in NASH.

ABSTRACT

- GNV069 was Well Tolerated in NHP
- GNV069 was Well Tolerated in Rats
- GNV069 was Well Tolerated in NHP hepatocytes
- GNV069 demonstrated knockdown of HSD17B13 expression in both human and NHP hepatocytes in vitro.
- In vivo studies demonstrated potent reductions of hepatic HSD17B13 levels in nonhuman primates treated with GNV069.
- A single subcutaneous dose of GNV069 was well tolerated in rats and NHP, exhibiting no liver enzyme elevations.
- GNV069 is a promising candidate for further development.

RESULTS

GNV069 Reduced HSD17B13 in Vitro & in Vivo

- GNV069 inhibiting HSD17B13 is demonstrated in 2-dimensional (2D) culture of primary human (A) or monkey (B) hepatocytes and in spheroid cultures established with primary human hepatocytes (C, D). A single subcutaneous dose of GNV069 at 3 mg/kg in NHP achieved 70% inhibition on liver HSD17B13 levels analyzed by qPCR at Day 14 post dosing (n=4) (E).

Figure 1. GNV069 Reduces HSD17B13 in Vitro & in Vivo. In vitro potency of GNV069 inhibiting HSD17B13 is demonstrated in 2-dimensional (2D) culture of primary human (A) or monkey (B) hepatocytes and in spheroid cultures established with primary human hepatocytes (C, D). A single subcutaneous dose of GNV069 at 3 mg/kg in NHP achieved 70% inhibition on liver HSD17B13 levels analyzed by qPCR at Day 14 post dosing (n=4) (E).

Figure 2. GNV069 is well tolerated in NHP. Cyno monkeys were dosed with a single subcutaneous dose of GNV069 at 3-120 mg/kg. Liver enzyme ALT (A) and AST (B) levels in GNV069 treated animals were comparable to control animals. (n=2)

CONCLUSIONS

- GNV069 demonstrated knockdown of HSD17B13 expression in both human and NHP hepatocytes in vitro.
- In vivo studies demonstrated potent reductions of hepatic HSD17B13 levels in nonhuman primates treated with GNV069.
- A single subcutaneous dose of GNV069 was well tolerated in rats and NHP, exhibiting no liver enzyme elevations.
- GNV069 is a promising candidate for further development.