Introduction

- Nanoparticles can deliver imaging and therapeutic agents to diseased cells
- Nanoparticles can enter cells through endocytosis post-interaction with components of the plasma membrane or extracellular matrix

Different uptake pathways have different vesicle types associated with them

Objective

- To develop a classification algorithm for endocytic vesicles on transmission electron microscopy (TEM) images based on quantifiable features
- To automate the classification pipeline for endocytic vesicles that will maximize interoperator reliability and minimize data-handling time for large datasets

Significance

The development of this classification algorithm demonstrates an objective, impartial, and consistent methodology for identifying and characterizing endocytic vesicles in cell.

Preliminary analysis suggests certain morphological features we can use to build the classification algorithm for endocytic vesicles on TEM images

Method: Use ImageJ to manually analyze vesicle perimeters

Result: Different vesicle types have quantifiable characteristics

Classification algorithm coded on MATLAB® provides quantitative and automated flow for characterizing endocytic vesicles

Next steps

Validate the semi-automated classification algorithm by comparing the results and handling time with manual and subjective classification of endocytic vesicles

Vesicle types

Endocytic vesicles on electron microscopy images can be characterized and classified quantitatively

Morphology-based classification scheme for endocytic vesicles on electron microscopy images

¹ Division of Engineering Science, University of Toronto, Room 2110, 40 St. George Street Toronto, Ontario • M5S 2E4, Canada

² Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada

³ Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada

⁴ Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada ⁵ Department of Chemical Engineering, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada

⁶ Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario M5S 3E1, Canada

* These authors contributed equally to this work

References

Behzadi, S., Serpooshan, V., Tao, W., Hamaly, M. A., Alkawareek, M. Y., Dreaden, E. C., Brown, D., Alkilany, A. M., Farokhzad, O. C., & Mahmoudi, M. (2017). Cellular uptake of nanoparticles: journey inside the cell. Chemical Society reviews, 46(14), 4218–4244. https://doi.org/10.1039/c6cs00636a

Pavelka, M., & Roth, J. (n.d.). Functional Ultrastructure: Atlas of Tissue Biology and Pathology (3rd ed. 2015). Springer Vienna. https://doi.org/10.1007/978-3-7091-1830-6

Acknowledgements

Wanda Janaeska¹, Jamie LY Wu^{2,3,*}, Wayne Ngo^{2,3,*}, Warren CW Chan^{2,3,4,5,6}

