

Introduction

- Colorectal cancer represents 10% of estimated new cancer cases and 11% of estimated cancer deaths in 2022
- A more reliable, inexpensive and portable test would better allow for pointof-care colon cancer screening
- Three specific urinary metabolites can be used as biomarkers for detecting colon cancer: diacetylspermine, creatinine and hippuric acid
- These metabolites need to be conjugated to liposomes or gold nanoparticles (GNPs) to amplify a change in the electrical impedance of the sensor system
- The binding and detachment of the conjugated metabolites to an electrode surface modified with metabolite-specific antibodies can cause a detectable change in electrical impedance

The Development of an Impedance-Based Biosensor for Early Detection of Colon Cancer Yeganeh Khaniani, Payton LeBlanc, Varun Aggarwal, Irene Chen, Angela Chan, Ashley Zubkowski, Sajjad Janfaza, Scott MacKay, Prashanthi Kovur, David Wishart

Presenter: Irene Chen, ic@ualberta.ca

- A) Attachment of metabolite B) Incubation with metabolites conjugated to liposome or GNPs to allow attachment to
- C) Competitive binding between conjugated metabolites and free metabolites

Scanning Electron Microscopy (SEM)

Figure 1. Representative SEM pictures of 1cm by 1cm Silicon Dioxide Wafers. A) No surface modification. B) Addition of APTES. C) Creatinine antibody- treated surface. D) Surface treated with creatinine antibody and GNP-Creatinine

- Gold nanoparticles and liposomes can be conjugated to creatinine, hippuric acid and diacetylspermine These conjugated nanoparticles can be detected by \bullet attaching to the surface of an antibody-modified electrode via impedance signalling

Results

Atomic Force Microscopy (AFM)

Figure 3. AFM height images of (a) the surface of the electrode with no modifications (b) electrode surface treated with creatinine antibodies and exposed to GNP-creatinine. The corresponding height histograms are shown in (c) and (d).

Conclusions

Figure 2. AFM height images of (a) the surface of the electrode with no modifications (b) electrode surface treated with diacetylspermine antibodies and exposed to GNP-AcSpm (c) electrode surface treated with hippuric-acid antibodies and exposed to GNP-Hippuric Acid

Acknowledgements

References

[1] Mackay, S, 2017, "Design of an Impedance-based, Gold Nanoparticle Enhanced Biosensor System," PhD Thesis,

[2] Senel S, Kremer M, Katalin N, Squier C. Delivery of bioactive peptides and proteins across oral (buccal) mucosa. Current Pharmaceutical Biotechnology. 2001;2(2):175-186. doi:10.2174/1389201013378734 [3] Ta TK, Tran TN, Tran QM, Pham DP, Pham KN, Cao TT, Kim YS, Tran DL, Ju H, Phan BT. Surface functionalization of WO3 thin films with (3-aminopropyl)triethoxysilane and succinic anhydride. Journal of Electronic Materials.