Plasmonic enhanced femtosecond laser anticancer drug delivery using gold-lipid nanoparticles

Amélie Baron¹, Leonidas Agiotis¹, Antoine Uzel¹, Morteza Kafshgari¹, Igor V. Zhigaltsev², Pieter Cullis² and Michel Meunier¹ ¹Department of Engineering Physics, Polytechnique Montreal, Montreal, QC H3C3A7, Canada ² Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada

Introduction

Drawbacks:

1. Not specific to cancer cells

2. Only 5% of the drug reaches the tumor

3. High toxicity resulting in a limited amount tolerated by the body

Long-lasting lipid nanoparticles (LNPs) inside the body but still not specific to the cancer cells

Laser-triggered release the drug using the **gold nanoparticles**

> Specific delivery

Specific release in the tumor area **Decreased** drug release in **the general body**

Our goal : Improving cancer drug delivery!

Our approach

The formulation :

- > Liposome (LNPs) of 100 nm with gold nanoparticules (GNPs) of 5-10 nm encapsulating chemotherapy drug **Doxorubucin (DOX)** [50 µg/mL]
- > LNPs formed from DODAP/DSPC/Chol/PEG-DSPE

- **2. Laser scanning** to trigger liposome opening
- 3. Viability test after irradiation (to ensure that DOX effectively kills cells)

48h incubation

2. LASER irradiation (different parameters)

24h incubation

3. Viability test (MTT test or fluorescence imaging)

Mechanism

AuN

DSPC

Trigger mechanism:

- **Off resonance plasmonic** response to triggered light
- **Collective amplification** allowing to reach a high intensity (~2.5 \times 10¹³ W/cm²)
- Ionization of the DSPC molecule (photochemical effect)
- Liposome opening

Fig. 2: Schematic diagram applied for the numerical simulations of temperature increase

In vitro results with MDA-MB-231 breast cancer cells

Fig. 4 : Fluorescence imaging by LASER irradiation on MDA-MB-231 cells with LNPs-GNPs-DOX and LASER parameters.

Conclusion :

- > Over 95 % cells viability for less than 248 mJ/cm²
- > 20-40% DOX is released and kills cells in the optimal range after LASER irradiation
- ➤ Femtosecond laser at 800 nm → Translation to in vivo study

Conclusion

Conclusion :

> Encapsulated triggered release DOX is effective in delivering chemotherapeutic drug to cancer cells.

Expected results :

 \uparrow Increased **tumor site-specific** release and \downarrow decreased healthy cell death.

↑ Increased tolerated injectable dose.

References

[1] Société canadienne du cancer, Statistiques sur le cancer du sein, Société canadienne du cancer, may 2023. https://cancer.ca/fr/cancer-information/cancertypes/breast/statistics [2] P. Cullis, I. Zhigaltsev, J. Kulkarni, A. Uzel, et M. Meunier, Hybrid lipid nanoparticle for *laser or light-stimulated delivery of a therapeutic and/or imaging agent,* US Patent App. 63/340,678 [3] Upputuri, Paul Kumar & Pramanik, Manojit. (2019). Photoacoustic imaging in the

second near-infrared window: a review. Journal of Biomedical Optics. 24. 40901. 10.1117/1.JBO.24.4.040901.

[4] A. Uzel, M. Kafshgari, I.V. Zhigaltsev, L. Agiotis, D. Wizigmann, P. R. Cullis and M. Meunier, Single pulse nanosecond laser-stimulated targeted delivery of anti-cancer drugs *from hybrid lipid nanoparticles containing 5 nm gold nanoparticles* [in preparation] [5] Zhigaltsev, Igor & Tam, Yuen & Kulkarni, Jayesh & Cullis, Pieter. (2022). Synthesis and Characterization of Hybrid Lipid Nanoparticles Containing Gold Nanoparticles and a Weak Base Drug. Langmuir. 38. 10.1021/acs.langmuir.2c01221.

