Chemotherapeutic Nanoparticles Accumulate in the Female Reproductive System during Ovulation Affecting Fertility and Anticancer Activity

Maria Poley1, Yael Shammai1, Maya Kaduri1, Lilach Koren1, Omer Adir1,2, Jeny Shklover1, Janna Shainsky1, Irit Ben-Aharon3,4, Assaf Zinger5,6,* and Avi Schroeder1,*

1Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel. 2The Norman Seiden Multidisciplinary Program for Nanoscience and Nanotechnology, Technion – Israel Institute of Technology, Haifa 32000, Israel. 3Oncology, Rambam Health Care Center, 3109601 Haifa, Israel. 4Technion Integrated Cancer Center, Faculty of Medicine, Technion, 320000, Haifa, Israel. 5Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, TX, USA. 6Orthopedics and Sports Medicine, Houston Methodist Hospital, TX, USA

*Correspondence: A.Z. ayzinger@houstonmethodist.org ; A.S. avids@technion.ac.il

Throughout the female menstrual cycle, physiological changes occur that affect the biodistribution of nanoparticles within the reproductive system. This can have positive or negative effects. We demonstrate a 2-fold increase in nanoparticle accumulation in the ovaries during female mouse ovulation (Fig. 1a) compared to the non-ovulatory stage (Fig. 1b) following intravenous administration. Accumulation in the reproductive system is favored by nanoparticles smaller than 100 nm. Chemotherapeutic nanoparticles administered during ovulation increased ovarian toxicity and decreased short-term and long-term fertility when compared to the free drug. Breast cancer treated with nanomedicines during ovulation results in higher drug accumulation in the reproductive system rather than at the site of the tumor, reducing treatment efficacy. Conversely, ovarian cancer treatment was improved by enhanced nanoparticle accumulation in the ovaries during ovulation. Our findings suggest that the menstrual cycle should be considered when designing and implementing nanotherapeutics for females.